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Green’s function is used as a basis for considering the flow of a conducting fluid in a pipe 
of rectmgnlsr cross section with nonconductive walls under a transverse magnetic field 
(the Shercliff problem). The distributions of the velocity and induced magnetic field next to 
the walls which are parallel to the external magnetic field and near the comers of the pipe 
cross section are investigated in detail, especially for large Hartmann numbers. The results 
obtained are illustrated graphically. 

1. The steady-state flow of a viscous conductin fluid in a rectan 
transverse magnetic field is investigated in severa k papers [ 1 to 51. #%Zp[l~%: ?f the 
external magnetic field Ho is homogeneous and if the velocity field and the induced elec 
tric and magnetic fields are independent of the coordinate z measured in the direction of the 
pipe axis, then there exists a solution of the equations of steady motion of the conducting 
viscous incompressible fluid in the pipe for which the velocity v and the induced magnetic 
field H are parallel to the z-axis and satisfy Eqs. 
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The x-axis lies in the direction of the field H ‘; o, p, y are the conductivity, magnetic 
permeability, and coefficient of viscosity of the fluid, respectively; c is the velocity of 
light; ~?p/d I = P ‘is the pressure gradient which is assumed to be constant over the pipe 
cross section. 

The boundary conditions at the channel walls, which we assume to be nonconductive, 
reduce to the vanishing of both v and H at the 

This solution of this problem is given in [l P 

ipe contour S. 
in the form of infinite trigonometric series 

whose convergence deteriorates with increasing Hartmann numbers M. Shercliff showed that 
for large M his solution is practically identical to the ordinary solution of the one-dimen- 
sional Hartmann problem except in the regions adjacent to the channel walls r = 0 and y = d. 
The same author also obtained a solution of an approximate equation applicable for large 
numbers M near the walls parallel to the external magnetic field except for points in the im- 
mediate vicinity of the comers. He assumed the second derivatives with respect to *: in Eqs. 
(1.1) and (1.2) to be small as compared with the other terms and therefore negligible. The 
equations obtained in this way were solved exactly by wa of au ele ant substitution. 

Another method of solving the problem is suggested in ‘t 21 and [ 3 B . It involves the use of 
the Green function in an Eq. of the form 

Au - mxu = 0, 
- 

m = (pH’I2c) I/a/q 
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This method makes it possible to obtain solutions directly and in s form convenient for 
practical applications for large Hartmann numbers and at all points of the channel cross 
section. 

We shaI1 use the method here to obtain the velocity and magnetic field distributions in 
the boundary layer parallel to the magnetic field Ho and in tbe neighborhood of the corner 
point of ths contour. 

2. In accordance with the usual procedure, we begin by introducing the functions 

w* = v+qmY”-faH 
c P” 

a=-, ‘I--Km (2.1) 

for which we obtain Eqs. 

Awk f Zmmu,/& = 0 (2.2) 

with the boundary conditions 

**ts I = qtn?p (sf (2.3) 

Further, setting 

m* 
_= eFfllX 

‘p* (2.4) 

we obtain for the functions qf the follow- 
ing Eq.: 

A’P+ - m”cpl = 0 (2.5) 

with the boundary conditions 

cp* IS = e*ImE (‘) qtrzqe (s) (2.6) 

Then, in accordance with f31, we have 
V-_-c- fjW?/r + 

aH = qm @shm (6 -5) g ds 
s 

(2.8) 

fs) 
where G fz, y1 4, ‘11 is the corres onding Green function, fr, yl is a fixed point of the do- 

main bounded by the contours, f P , ~1 is a point on this contour, and R is the exterior nor- 
mal. 

3. Assuming that md >> 1 and ml > 1, we can be content in investigating the flow near 
the channel wall y = 0 with a few terms of the Green function series, since these terms dim- 
inish rapidly with a large Hartmann number. Thus, we set 

-I& [m v’(x -i_ Sf” + (y- q)“) 4 H6 OtE v’@ -i Cl2 + (Y -t WI - 

- I-Co [Ill y’(21- x - 4)” + (y - rl)?] + hY* [?h 1/&z - 5 - W + fw + WI f 

+ & [m y’(21 -+- 5 - 4)x+ (Y - Tp] - Ko [nl VP -t x - 4)” + (Y + VI (3.1) 

where the terms of orders cad and e -*I have been omitted. The velocity for 0 < x < l/2 

is then given by Formula 
qttc+(I - x) 

vz - qm@ + y chmxF (z, Y) f ?[ chm(t - I) F [(I - J-): Yj -- 

pm2 (I + a) 
Jt 

chm (I -If F ?(1 + r); Y] (3.2) 

d 

F (a; Y) = q2 s -t K1Im l/~2+(Y-rl)21 _ k'l Ina Ifa2 -I- (Y t 71J21 
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dq (3.3) 
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Since y << d, it follows that m (d - y) > 1, m (d + y) >> 1, so that by a simple substitu- 

tion of variables we can reduce Formula (3.3) to the more convenient form 

F (a; y) = 2 
Kr(nt l/a2f) 

Ko[m l/a2+~*l +2\(y2+rz) ,,-- dt (3.4) 
c 
0 

Similarly, we can derive Formula 

uH = i e shmx: (z, y) -j- 
q”L2 (1 -- a) 

~ shtn (I --z) F [(l -z), y] - 

(3.5) 

Figs. 1 to 3 show curves computed using Formulas (3.2) and (3.5) for the case ml = 7 in 

the range O( x6 l/2, where c = my, v,, = mZ/2, and V is the velocity in the corresponding 

Hartmann problem. 

4. In conclusion let us compare this solution with the approximate solution obtained by 
Shercliff in [I] for the boundary layer at points near the wall y = 0 and at a sufficient dis- 
tance from the comer, i.e. for 1s I 

Let us consider the function u_ = v - I n/-w 

- 

0 2.0 fix 3 l7 1.0 2.0 n TX 25 

Fig. 2 Fig. 3 

--Q H introduced by Sherciiff, for which in accordance with (3.2) and (3.5) we obtain Expre- 

ssion 

qm’x v_=v-aaH=-qmy2-j-ye m% F t5; y) + 

eBm (I-*) F [ (2 - 2); y] - 
P2 (I + x) 

e-“’ (z-r) F [(I + 5); y] (4.2) 

Since m (1 - x) >> 1, we can neglect terms of the o,“aer e-~ff-X) to obtafn 

v_=-qmyz+ ‘$ F (cc:; y) (4.3) 

s .e. 
I4 

v_ = - wya + ~{+(m )122+y*)+2S(y2+t2) Kl Cm I/xp + t*) dt 
> 

(4.4) 

0 
JGqz~ 

Making use of asymptotic representations of the Macdonald function and taking account 
of conditiona (4.1). we obtain the following Expression for F: 

F (2, y) = $ 
n 
Pntr e 

Subetitudng (4.5) into (4.31, we have 

(4.5) 

v_=-qmyzf +Jg$(i+g) (4.6) 
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Following Shercliff’s procedure and introducing the new varisble 

y v2mJr 
we obtain 

(4.71 

00 * s - u2 du 
exp 4 f’2 + .%)a = o.23 

0 
(4.10) 

Then, to within terms of the order u3 Formula (4.9) yields 

Comparison with (4.8) shows that in the region considered Formula (4.11) is close to the 
exact one. 
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